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Finite-size investigation of scaling corrections in the square-lattice
three-state Potts antiferromagnet

S. L. A. de Queiroz*
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~Received 1 February 2002; published 26 April 2002!

We investigate the finite-temperature corrections to scaling in the three-state square-lattice Potts antiferro-
magnet, close to the critical point atT50. Numerical diagonalization of the transfer matrix on semi-infinite
strips of width L sites, 4<L<14, yields finite-size estimates of the corresponding scaled gaps, which are
extrapolated toL→`. Owing to the characteristics of the quantities under study, we argue that the natural
variable to consider isx[L e22b. For the extrapolated scaled gaps we show that square-root corrections, in the
variable x, are present, and provide estimates for the numerical values of the amplitudes of the first- and
second-order correction terms, for both the first and second scaled gaps. We also calculate the third scaled gap
of the transfer matrix spectrum atT50, and find an extrapolated value of the decay-of-correlations exponent,
h352.00(1). This is at odds with earlier predictions, to the effect that the third relevant operator in the
problem would givehPstagg

53, corresponding to the staggered polarization.
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I. INTRODUCTION

The three-state Potts antiferromagnet on a square la
exhibits a second-order phase transition atT50, with dis-
tinctive properties. Among these is the exponential div
gence of quantities such as the correlation length and s
gered susceptibility.

While earlier studies agreed in pointing to a temperat
dependence of the bulk correlation length in the form

j`~b!;bp exp~vbx!, b[
1

kBT
, ~1!

different conjectures were advanced for the values ofp, v,
andx, mostly on the basis of numerical work. In particula
the value ofx was variously estimated as 1.3~transfer-matrix
results@1# analyzed by the Roomany-Wyld approximant@2#,
and Monte Carlo work@3#!; 3/4 ~conformal invariance argu
ments coupled with an analysis of the eigenvalue spect
of the transfer matrix@4#!; and 1~further Monte Carlo work
@5#!. Later studies@6#, applying crossover arguments
transfer-matrix data taken with an external fieldH, near the
critical point T5H50, gavex51.0860.13. Additional evi-
dence compatible withx51, andv52, was found via exten-
sive Monte Carlo simulations@7#. In this latter reference it
was argued that, althoughp.1 gave the best fits to numer
cal data, such a logarithmic correction to the dominant
havior was difficult to justify on theoretical grounds; also,
value of p50 could be made to fit the data, albeit wi
poorer quality than forp51.

A substantial step towards fuller understanding of
critical properties of the model was given in Ref.@8#.
Through a mapping to the six-vertex model, where the m
relevant excitations are vortices, the authors were able to
that the bulk correlation length diverges as above, with
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following exact values for the corresponding parametersx
51, v52, p50. Further, they established the form of th
leading corrections to scaling, so that

j`~b!5A e2b ~11b b e2b1••• !. ~2!

The valueb526.6560.11 was calculated, upon conside
ation of the stiffness constant of a related model where n
vortex defects are the main excitations. Similar results w
derived for the bulk staggered susceptibility. Finally, it w
shown that the data of Ref.@7# are compatible with the pre
dictions just quoted. The effects previously ascribed to lo
rithmic corrections could be explained once the correctio
to scaling, in the form and sign predicted, were taken i
account. The constant in Eq.~2! was fitted toA50.121(3)
@8#, close to the earlier estimateA.0.11–0.12 forp50 in
Ref. @7#.

Data in Ref.@7# were taken for 2.0<b<6.0 @correspond-
ing to 5&j`(b)&20000#, on L3L lattices with 32<L
<1536. Thus, in most cases extrapolation procedures w
used to estimate theL→` limiting values of the quantities
of interest.

On account of the exponential divergences, the error b
associated with extrapolated quantities turned out to incre
steeply for lower temperatures. For example~see Table 4 of
Ref. @7#!, the estimate ofj` starts with a relative error of 1%
at b52.5, which slowly grows to 3% atb55.2 but then
reaches 16% atb55.9 and 33% atb56.0. Therefore, the
picture at the high-b end of the fits to theory in Ref.@8# is
less than entirely clear.

Our main purpose here is to complement the test of R
@8#, by means of transfer-matrix data generated onL3`
strips of the square lattice. Being essentially exact result
numerical diagonalization, our data do not suffer from t
fluctuations intrinsic to Monte-Carlo studies, allowing one
reach arbitrarily largeb, in principle; instead, owing to limi-
tations in the largest strip width accessible~we used 4<L
<14, L even, with periodic boundary conditions across!, the
most important potential source of uncertainties is theL
©2002 The American Physical Society04-1
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→` extrapolation. This drawback is somewhat mitigated
the rather smooth behavior of finite-L data sequences, a
shown below.

II. STRIP SCALING AND FINITE-SIZE CORRECTIONS

The choice of quantities to investigate is, in part, dicta
by specific features of the strip geometry; here we have c
sen to calculate the first and second scaled gaps,

h i5 lim
L→`

L

pj i
, j i

215L02L i , i 51,2, ~3!

whereeL j are the (L-dependent! largest eigenvalues of th
transfer matrix. At the critical pointb5`, conformal invari-
ance@9# states that these quantities give the respective de
of-correlation exponents; in the present case, the lowest
i 51 is related to the staggered magnetization, with ass
ated exponenthstagg51/3, while i 52 gives the uniform
magnetization decay,hu54/3 @10,11#. The next relevant op-
erator is related to the staggered polarization@10,11#, and
will be briefly discussed in connection with scaling of th
third gap (i 53), in Sec. IV.

For finiteb one is off criticality, thus theh i above are not
to be interpreted as exponents; nevertheless, they are qu
ties whose difference from thebona fideb5` exponents is
expected to depend on powers of the~suitably defined! dis-
tance to the critical point.

According to finite-size scaling@12# one must have, with
j`(b)[j1(b,L5`) given by Eq.~2!,

L

pj i~b,L !
5 f i S L

j`~b! D . ~4!

Since thefinite-sizecorrections here usually are of larg
magnitude than thefinite-temperatureones, we shall only
take into account the dominant temperature dependenc
j`(b), that is, we shall write

L

pj i~b,L !
5 f i~x!, x[L e22b. ~5!

On the other hand, the incorporation of the finite-L effects
will be done phenomenologically, as explained in the follo
ing.

At T50 ~that is,x[0), very good convergence of finite
width estimates@h i(L)# of hstagg,u towards the exact result
(h i) is attained by assuming corrections of the form

h i~L !5h i1
ai 0

L2
1

bi 0

L4
1••• . ~6!

These so-called ‘‘analytical’’ corrections, in powers ofL22,
are expected to occur for any theory on a strip geometry
they are related to the conformal block of the identity ope
tor @13#. They will be the main corrections, provided that n
other irrelevant operator with a low power arises~as is the
case for the three-state Pottsferromagnet@14,15# where an
L24/5 term is present!. In order to illustrate how Eq.~6!
05610
y

d
o-

y-
ap
i-

nti-

of

-

as
-

works, and to give readers the opportunity to try their ow
extrapolation procedures, Table I gives our finite-L estimates
of hstagg and hu , together with their respective extrapola
tions via equal-weight least-squares fits of data~we system-
atically discardL54 data!. Error bars quoted are the stan
dard deviations of the estimated intercepts atL2150, as
given by standard least-squares fitting procedures. Be
going further, it must be stressed that this structure of c
rections to scaling is, in principle, specific to strip geometr
@13#; thus it is not surprising that different results~namely,
corrections toj/L given by BL211CL25/3) have been
found for this same model, also atT50, on fully finite L
3L lattices@11#.

In order to disentangle the finite-temperature correctio
~to bulk behavior! that are of interest here, we shallassume
that, for fixedx5Le22b one can still write

h i~L,x!5h i~x!1
ai~x!

L2
1

bi~x!

L4
1•••, ~7!

where lim
x→0

ai(x)5ai 0 and similarly for the other

x-dependent quantities. In this way we expect to account
the explicit L-dependence of our finite-width results, bein
left only with that given through the argument of Eq.~4!,
which is intrinsic to scaled gaps.

We illustrate the validity of the smoothness assumpt
just made, by displaying in Table II our data for the large
value of x used ~see below!, xmax50.04096. Comparison
with Table I shows that, although standard deviations h
increased by roughly two orders of magnitude, they still ke
within quite reasonable bounds, giving credence to
smoothness assumption underlying Eq.~7! for all
intermediate-x values used here.

III. FINITE-TEMPERATURE CORRECTIONS

In the analysis of the extrapolated~bulk! quantities, we
shall check for corrections to scaling in thex variable, that is,

h i~x!5h i~0!1CiAx1Di~Ax!21•••. ~8!

TABLE I. Finite-L and extrapolated estimates ofhstagg, hu .
The latter are the results of equal-weight fits of data forL
56,8, . . . ,14respectively to a single-power (L22) correction~Extr.
1! and to Eq.~6! ~Extr. 2!.

L hstagg hu

4 0.308785582 1.47544318
6 0.321556256 1.39168002
8 0.326473031 1.36528410
10 0.328860921 1.35352975
12 0.330193867 1.34726477
14 0.331011103 1.34352745
Extr. 1 0.3331~1! 1.3324~3!

Extr. 2 0.333303~5! 1.333347~2!

Exact 1/3 4/3
4-2
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Note that a literal translation of Eq.~2! would suggest tha
the corrections in Eq.~8! should depend onAx ln x rather
thanAx alone; however, consistently with the argument us
in establishing Eq.~5!, here we shall deal only with the
dominant terms.

We have takenx values decreasing by powers of 2, fro
xmax50.04096 toxmin5xmax/2

2753.05176310210. Using, as
a first-order approximation, j`(b)5Ae2b with A
50.121(3)@8#, the above values ofx correspond to the rang
b52.29, j`.10 (x5xmax, L54) to b512.27, j`.5.4
3106 (x5xmin , L514). The lower limit was set by deter
mining when the difference between the central estima
h i

ext(xmin)2hi
ext(0) became of the same order as the stand

deviation of either extrapolated quantity~see Table III where
one sees that, although this criterion has been follow
strictly for h2, the three smallest-x entries forh1 are in fact
below the threshold; however, by performing analyses w
and without the corresponding data, we have checked
this is of no great import to our conclusions!. Table III also
shows that, although our extrapolations are veryprecise, ow-
ing to the remarkably smooth variation of data againstL,
they seem to suffer from a slight lack ofaccuracy. Indeed,
for x50 our central estimatesh i

ext stand, respectively, 6 an
8 standard deviations away from the known exact values
h1 andh2. We ascribe this effect tosystematicerrors coming
from: ~i! the shortness~in L) of our data series, and~ii !
higher-order corrections, ignored in Eq.~7!. Since, at least
for x50, such errors amount to small differences in the c
tral estimates~respectively20.01% and10.001% forh1
andh2) relative to exact values, and assuming this scen
to carry over, continuously and smoothly, toxÞ0, we shall
do as follows. In Eq.~8!, for instance, we shall useh i

ext(0)
instead of the exacth i(0); this way we expect systemati
errors to cancel to a large extent, when considering the
ferenceh i

ext(x)2h i
ext(0).

Our first test is a single-power fit to scaling correction
we assume

h i~x!2h i~0!5Ci xu, ~9!

and varyu within a reasonably broad range, checking t
behavior of thex2 of the corresponding least-squares fit. O

TABLE II. Finite-L and extrapolated estimates ofh1 , h2, for
x50.04096. The latter are the results of equal-weight fits of data
L56,8, . . . ,14 respectively to a single-power (L22) correction
~Extr. 1! and to Eq.~7! ~Extr. 2!.

L h1 h2

4 0.395983934 1.64309174
6 0.402292849 1.58471908
8 0.404971786 1.55458116
10 0.406303355 1.53956140
12 0.407011253 1.53059628
14 0.407389676 1.52458596
Extr. 1 0.4086~1! 1.512~1!

Extr. 2 0.40862~6! 1.5090~6!
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results, using as input the upper half of Table III~14 data
plus thex50 line, for each fit! are displayed in Fig. 1, where
very sharp minima can be seen slightly abovex50.5 ~to
three decimal places, they are located respectively ax
50.508 forh1 , x50.503 forh2). This signals that~i! cor-
rections depending onAx are definitely present, thus sup
porting the assumption made in Eq.~8!; and~ii ! higher-order
terms are not negligible. Indeed, inclusion of data for largex
causes thex2 to increase steeply, while the sharpness of
dips deteriorates, and their position shifts towards largeru.

Having ensured that square-root corrections to scaling
an essential element of the picture, we attempt to inclu
higher-order terms, in the manner of Eq.~8!. We plot
@h i(x)2h i(0)#/Ax againstAx, thus one expects

h i~x!2h i~0!

Ax
5Ci1DiAx1O~x! ~10!

and attempts straight-line fits. Results are in Fig. 2. The s
set of data considered now is complementary to that use
the earlier single-power fits, as higher-order terms beco

r
TABLE III. Extrapolated values ofh1(x), h2(x). For eachx

they are the result of an equal-weight fit of data forL56,8•••14 to
Eq. ~7!.

x h1
ext h2

ext

0 0.333303~5! 1.333347~2!

3.05176310210 0.333305~5! 1.333352~3!

6.10352310210 0.333306~5! 1.333354~3!

1.220731029 0.333306~5! 1.333358~3!

2.4414131029 0.333308~5! 1.333362~3!

4.8828131029 0.333309~5! 1.333369~3!

9.7656331029 0.333311~5! 1.333378~3!

1.9531331028 0.333315~5! 1.333391~3!

3.9062531028 0.333319~5! 1.333409~4!

7.812531028 0.333326~5! 1.333435~4!

1.562531027 0.333335~5! 1.333471~5!

3.12531027 0.333347~5! 1.333523~6!

6.2531027 0.333366~4! 1.333596~7!

1.2531026 0.333392~4! 1.333701~10!

2.531026 0.333429~4! 1.333849~13!

531026 0.333483~2! 1.334060~17!

131025 0.333560~1! 1.334363~22!

231025 0.333673~2! 1.334796~31!

431025 0.333839~4! 1.33542~4!

831025 0.334087~8! 1.33634~6!

0.00016 0.334465~13! 1.33768~8!

0.00032 0.335054~21! 1.33969~11!

0.00064 0.335999~32! 1.34276~15!

0.00128 0.33756~5! 1.34754~22!

0.00256 0.34025~6! 1.35523~30!

0.00512 0.34507~9! 1.3681~4!

0.01024 0.35409~11! 1.3904~5!

0.02048 0.37183~12! 1.4309~6!

0.04096 0.40862~6! 1.5090~6!
4-3
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more important forx not very small. We noticed that inclu
sion of data from the last 3–4 lines of Table III caused
quick deterioration of the quality of linear fits~the resulting
curvature can be seen by naked eye!; this is probably the
effect of third- and higher-order terms inAx. An alternative
source of errors would be the multiplicative logarithm
terms, mentioned in connection with Eq.~8! above, and not
considered in the present approach. Therefore, we decide
keep to the range ofx for which good linear plots were
obtainable, while using as many data as possible@in order to
reduce the spread in the estimates ofCi andDi of Eq. ~8!#.
The best compromise was found by taking data for
31026,x,0.00256, shown in Fig. 2 together with the co
responding least-squares fits.

Our estimates of the amplitudesCi andDi are shown in
Table IV, where for single-power fits of Eq.~9! we quote
only results foru50.5. Although, as explained above, the
do not correspond to the respective absolute minima ofx2,
they exhibit a very good quality of fit, and it seems mo
appropriate to compare them~instead of those obtained at

FIG. 1. Semilogarithmic plot ofx2 againstu for least-squares
fits of Eq. ~9!. Crosses:h1; squares:h2. Data for h2 shifted up-
wards by a factor of 100 on vertical scale, to avoid superposit
For each fit, only data in the interval 3.05176310210<x<2.5
31026 of Table III were used~see text!.

FIG. 2. Plots of@h i(x)2h i(0)#/Ax againstAx, for i 51 ~a! and
i 52 ~b!. Straight lines are linear least-squares fits to the subse
data in plot, corresponding to 531026,x,0.00256 in Table III
~see text!.
05610
to

minimal x2) to the estimates ofCi from Eq. ~10!, where the
power 1/2 is fixed from the start.

IV. SCALING OF THIRD GAP

Finally, we have investigated the scaling of the third g
at T50. According to theory@10,11#, at the critical point
there are only three relevant operators, corresponding~in de-
creasing order of relevance! to staggered magnetization, un
form magnetization, and staggered polarization. Although
recalled above, there is widespread agreement betw
theory and numerical work as regards the first two, the p
diction of Ref. @11#, namely, that the corresponding deca
of-correlations exponent ishPstagg

53, appears not to have

been numerically tested so far.~In Ref. @11#, Monte Carlo
simulations were performed for the respective susceptibi
which according to the scaling lawg/n522h is expected to
approach a constant, with corrections}L2D, D51, if h
53; the approach to a constant was indeed verified, w
the best fit was forD.0.75 instead of unity.!

We have calculated descending eigenvalues of the tran
matrix; it would seem plausible to associate the third sca
gap to the staggered polarization, especially since only th
relevant operators are expected to come up, and the rela
ship of the other two to the first two gaps is well establish
In order to check self-consistency of our results, we us
both a standard power-method algorithm, coupled w
Gram-Schmidt orthogonalization, and a Lanczos sche
While for small L and shallow levels~corresponding to ei-
genvaluesL i , i<3! both methods gave the same estimat
the Lanczos results displayed instabilities for deeper lev
andL>8. At present we are not able to explain such discr
ancies. Therefore, we restrict ourselves to the analysis of
third gap.

Our results, again displayed in the formh35L(L0
2L3)/p, are shown in Table V. In order to gain an unbias
perspective both of the limiting bulk value ofh3 and of the
scaling corrections, we attempted a single-power extrap
tion, h3(L)5h31a30/Lu with a variable poweru, and
monitored the variations of thex2 of the corresponding fits
againstu. The result was qualitatively very similar to tha
displayed for the fits of Eq.~9! in Fig. 1: a rather sharp
minimum, located atu51.8 in this case, which gave an ex
trapolatedh352.00(1) ~see Table V; the error bar was ca
culated by considering the estimates on either side ofumin
51.8, for which thex2 becomes one order of magnitud
larger than at the minimum!. Fixing u51, inspired by the
prediction of Ref.@11# for the susceptibility, gaveh3.2.11.

.

of

TABLE IV. Estimates of amplitudesCi , Di @see Eqs.~8!–~10!#,
andx2 per degree of freedom (x2/DOF) for respective fits.

Ci Di x2/DOF

Eq. ~9!, i 51, u50.5 0.079(4) 1.531023

Eq. ~10!, i 51 0.077(1) 1.18(3) 231022

Eq. ~9!, i 52, u50.5 0.317(5) 3.031023

Eq. ~10!, i 52 0.313(3) 2.3(1) 231023
4-4
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Two-power fits in the manner of Eq.~6!, using eitherL22

andL24 or L21 andL22 also gave values between 1.99 a
2.01. There seems to be no straightforward way to extra
late the data of Table V to includeh353 . At this point we
do not know how to reconcile our results to the predictio
of Ref. @11#.

V. CONCLUSIONS

In summary, we have undertaken a finite-size approac
investigate the corrections to scaling in the three-s
square-lattice Potts antiferromagnet. Owing to the charac
istics of the quantities under study, we argued that the nat
variable to consider isx[Le22b. We showed that the less
relevant finite-size corrections could be accounted for i

TABLE V. Finite-L and extrapolated estimates ofh3. The latter
is the result of an equal-weight fit of data forL56,8, . . . ,14 re-
spectively to a single-power (L2u) correction; the correspondin
u51.8 was chosen to minimize thex2 ~see text!.

L h3

6 1.74149553
8 1.84852826
10 1.90108612
12 1.93052844
14 1.94860339
Extr. 2.00~1!
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phenomenological scheme, based on the zero-tempera
picture; for the extrapolated scaled gaps we supplied c
vincing evidence that square-root corrections, in the varia
x, are present, and provided estimates for the numerical
ues of the amplitudes of the first- and second-order cor
tion terms, for both the first and second scaled gaps. It wo
be interesting if predictions based on theory could be
rived, to be compared with the numerical values of amp
tudes obtained in this work.

We have also investigated the behavior of the third sca
gap of the transfer matrix spectrum, and found an extra
lated value for the decay-of-correlations exponenth3
52.00(1). This seems incompatible with earlier prediction
to the effect that the third relevant operator in the probl
would givehPstagg

53, corresponding to the staggered pola
ization.
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