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Finite-size investigation of scaling corrections in the square-lattice
three-state Potts antiferromagnet

S. L. A. de Queiro?
Instituto de Fsica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21945-970 Rio de Janeiro RJ, Brazil
(Received 1 February 2002; published 26 April 2p02

We investigate the finite-temperature corrections to scaling in the three-state square-lattice Potts antiferro-
magnet, close to the critical point @t=0. Numerical diagonalization of the transfer matrix on semi-infinite
strips of widthL sites, 4<L <14, yields finite-size estimates of the corresponding scaled gaps, which are
extrapolated td-—o. Owing to the characteristics of the quantities under study, we argue that the natural
variable to consider is=L e~ 24, For the extrapolated scaled gaps we show that square-root corrections, in the
variable x, are present, and provide estimates for the numerical values of the amplitudes of the first- and
second-order correction terms, for both the first and second scaled gaps. We also calculate the third scaled gap
of the transfer matrix spectrum &t=0, and find an extrapolated value of the decay-of-correlations exponent,
n3=2.00(1). This is at odds with earlier predictions, to the effect that the third relevant operator in the
problem would givenpstagg=3, corresponding to the staggered polarization.
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[. INTRODUCTION following exact values for the corresponding parametgrs:
=1, v=2, p=0. Further, they established the form of the
The three-state Potts antiferromagnet on a square lattideading corrections to scaling, so that
exhibits a second-order phase transitionTatO, with dis-
tinctive properties. Among these is the exponential diver- £(B)=AeP(1+bpe F+...). )

gence of quantities such as the correlation length and staq_— _ ., .
gered susceptibility. he valueb=—6.65+0.11 was calculated, upon consider-

While earlier studies agreed in pointing to a temperaturétion of the stifiness constant of a related model where non-
dependence of the bulk correlation length in the form vortex defects are the main excitations. S!mllar_ result_s were
derived for the bulk staggered susceptibility. Finally, it was
shown that the data of R€f7] are compatible with the pre-
1 . . . .
£.(B)~BPexpvpY), B=—, (1) d_|ct|o_ns just qgoted. The effects pr_eV|0ust ascribed to I(_)ga-
kgT rithmic corrections could be explained once the corrections
to scaling, in the form and sign predicted, were taken into
different conjectures were advanced for the valuep,af,  account. The constant in E() was fitted toA=0.121(3)
andx, mostly on the basis of numerical work. In particular, [8], close to the earlier estima#=0.11-0.12 forp=0 in
the value ofx was variously estimated as 1(Bansfer-matrix ~ Ref.[7].
results[1] analyzed by the Roomany-Wyld approxim#at, Data in Ref,[7] were taken for 2.& 8<6.0[correspond-
and Monte Carlo work3]); 3/4 (conformal invariance argu- ing to 5<¢.(8)=<2000Q, on LXL lattices with 3L
ments coupled with an analysis of the eigenvalue spectrurs=1536. Thus, in most cases extrapolation procedures were
of the transfer matrix4]); and 1(further Monte Carlo work used to estimate the— o« limiting values of the quantities
[5]). Later studies[6], applying crossover arguments to of interest.
transfer-matrix data taken with an external fiéld near the On account of the exponential divergences, the error bars
critical pointT=H=0, gavex=1.08+0.13. Additional evi- associated with extrapolated quantities turned out to increase
dence compatible witk=1, andv =2, was found via exten- steeply for lower temperatures. For examfdee Table 4 of
sive Monte Carlo simulationf7]. In this latter reference it Ref.[7]), the estimate of,. starts with a relative error of 1%
was argued that, althougl=1 gave the best fits to numeri- at 8=2.5, which slowly grows to 3% aB=>5.2 but then
cal data, such a logarithmic correction to the dominant bereaches 16% aB=5.9 and 33% ap3=6.0. Therefore, the
havior was difficult to justify on theoretical grounds; also, apicture at the highB end of the fits to theory in Ref8] is
value of p=0 could be made to fit the data, albeit with less than entirely clear.
poorer quality than fop=1. Our main purpose here is to complement the test of Ref.
A substantial step towards fuller understanding of the[8], by means of transfer-matrix data generatedLoxoo
critical properties of the model was given in RdB]. strips of the square lattice. Being essentially exact results of
Through a mapping to the six-vertex model, where the moshumerical diagonalization, our data do not suffer from the
relevant excitations are vortices, the authors were able to finfluctuations intrinsic to Monte-Carlo studies, allowing one to
that the bulk correlation length diverges as above, with theeach arbitrarily larggs, in principle; instead, owing to limi-
tations in the largest strip width accessiljlee used 4<L
<14, L even, with periodic boundary conditions acrpske
*Electronic address: sldg@if.ufrj.br most important potential source of uncertainties is the
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—o0 extrapolation. This drawback is somewhat mitigated by TABLE I. Finite-L and extrapolated estimates @figg 7. -

the rather smooth behavior of finite-data sequences, as The latter are the results of equal-weight fits of data for

shown below. =6,8, .. .,ldrespectively to a single-powet ( %) correction(Extr.
1) and to Eq.(6) (Extr. 2).

II. STRIP SCALING AND FINITE-SIZE CORRECTIONS L

7stagg Mu
The qhmce of quantities to_ investigate is, in part, dictated 4 0308785582 147544318
by specific features of the strip geometry; here we have cho- 5 0.321556256 139168002
sen to calculate the first and second scaled gaps, : ’
8 0.326473031 1.36528410
) L . ) 10 0.328860921 1.35352975
pi=lim—r, & =Ao— A, =12 3 12 0.330193867 1.34726477
&
Lo B 14 0.331011103 1.34352745
wheree?i are the (-dependentlargest eigenvalues of the Extr. 1 0.33311) 1.33243)
transfer matrix. At the critical poing8= o, conformal invari- Extr. 2 0.33330®) 1.3333412)

ance[9] states that these quantities give the respective decay- Exact 13 413
of-correlation exponents; in the present case, the lowest gap

i=1 is related to the staggered magnetization, with associ- . . .
ated exponentyy,,~1/3, while i=2 gives the uniform works, and to give readers the opportunity to try their own

magnetization decayy,=4/3[10,11. The next relevant op- extrapolation procedures, Taple I giyes our fir_iitestimates

erator is related to the staggered polarizati@0,11, and O.f 7Tstagg and 7, tpgether with their respective extrapola-

will be briefly discussed in connection with scaling of the ioNs via equal-weight least-squares fits of data system-

third gap =3), in Sec. IV, atically discardL=4 datg. Error bars quoted are the stan-
' dard deviations of the estimated interceptsLat'=0, as

to be interpreted as exponents; nevertheless, they are quarﬂfy.en by stan_dard least-squares fitting procedures. Before
ties whose difference from thgona fide=oc exponents is going further, it must be stressed that this structure of cor-

expected to depend on powers of itablv defined dis- rections to_S(_:aIing is, in pr?nciple, sp_ecific to strip geometries
tar?ce to the crigcal poin? tsmitably e [13]; thus it is not surprising that different resulisamely,

; i -1 -5/
According to finite-size scalinfl2] one must have, with corrections to¢/L given by BL™'+CL™°%) have been

For finite 8 one is off criticality, thus they; above are not

_ _ ; found for this same model, also @&t=0, on fully finite L
0 = ,L_ b E . 2 y X 1 ’
£.(B)=£1(B,L="=) given by Eq.(2) L atines| 11
L ( L ) In order to disentangle the finite-temperature corrections
=f : (4)  (to bulk behavioy that are of interest here, we shaisume
m&(BL) &=(B) that, for fixedx=Le 2# one can still write
Since thefinite-size corrections here usually are of larger
magnitude than thdinite-temperatureones, we shall only ai(x) by(x)
take into account the dominant temperature dependence of 7i(LX)=n(X)+ ——+——+---, (7)
. . L L
£.,(B), that is, we shall write
L where Iirn)(_}oai(x)=ai o and similarly for the other
—————=fi(x), x=Le %A (5) i .
w&(B,L) x-dependent quantities. In this way we expect to account for

the explicit L-dependence of our finite-width results, being
On the other hand, the incorporation of the firliteeffects  |eft only with that given through the argument of Eg),
will be done phenomenologically, as explained in the follow-which is intrinsic to scaled gaps.
ing. We illustrate the validity of the smoothness assumption
At T=0 (that is,x=0), very good convergence of finite- just made, by displaying in Table Il our data for the largest
width estimateg 7;(L)] of 7saqq, towards the exact results value of x used (see below, X,,,=0.04096. Comparison
(7;) is attained by assuming corrections of the form with Table | shows that, although standard deviations have
increased by roughly two orders of magnitude, they still keep
a0 bio within quite reasonable bounds, giving credence to the
7i(L)=n+ F+ e ®  smoothness assumption underlying Eq7) for all
intermediatex values used here.
These so-called “analytical” corrections, in powers lof?,
are expected to occur for any theory on a strip geometry, as Il. EINITE-TEMPERATURE CORRECTIONS
they are related to the conformal block of the identity opera-
tor [13]. They will be the main corrections, provided that no  In the analysis of the extrapolatéBulk) quantities, we
other irrelevant operator with a low power ariges is the shall check for corrections to scaling in theariable, that is,
case for the three-state Poferomagnet 14,15 where an
L~*5 term is present In order to illustrate how Eq(6) 7i(X) = 5,(0) + Ci X+ D (VX) 2+ - - - (8)
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TABLE II. Finite-L and extrapolated estimates gf, #»,, for TABLE Ill. Extrapolated values ofp,(x), 7,(x). For eachx
x=0.04096. The latter are the results of equal-weight fits of data fothey are the result of an equal-weight fit of datalfer 6,8- - - 14 to
L=6,8,...,14respectively to a single-powerl(?) correction Eq. (7).

(Extr. 1) and to Eq.(7) (Extr. 2).

ext

ext

X 71 72

- n 72 0 0.33330%) 1.3333472)

4 0.395983934 1.64309174 3.05176<10 %0 0.33330%5) 1.3333523)

6 0.402292849 1.58471908 6.10352< 10 1° 0.3333065) 1.3333543)

8 0.404971786 1.55458116 1.2207x 10°° 0.3333065) 1.3333583)

10 0.406303355 1.53956140 2.44141x10°° 0.3333085) 1.3333623)

12 0.407011253 1.53059628 4.88281x10°° 0.3333095) 1.33336%3)

14 0.407389676 1.52458596 9.76563< 10" ° 0.3333115) 1.3333783)
Extr. 1 0.40861) 1.5121) 1.95313<10 8 0.33331%5) 1.3333913)
Extr. 2 0.408626) 1.50906) 3.90625¢ 10 8 0.33331¢5) 1.3334094)
7.8125<10°8 0.3333265) 1.33343%4)

) ] 1.5625<10° 7 0.33333%5) 1.3334715)

Note that a literal translation of E¢2) would suggest that 3.125¢ 107 0.3333475) 1.3335286)
the corrections in Eq(8) should depend on/x Inx rather 6.25x 10~ 7 0.3333664) 1.3335967)

than X alone; however, consistently with the argument used 1.25x 106 0.3333924) 1.33370110)

in establishing Eq(5), here we shall deal only with the 2 5% 10°8 0.3334294) 1.33384913)

dominant terms. , 5x10°° 0.33348%2) 1.33406017)

We have takernx values decreasing by powers of 2, from 1x10°5 0.3335601) 1.33436822)

Xmax=0.04096 tOX in=>Xma/ 2> = 3.05176< 10" 1%, Using, as 2% 10-5 0.3336782) 1.33479631)
a first-order approximation, &.(8)=Ae*® with A 4% 10-5 0.33383 1335424
=0.121(3)[8], the above values ofcorrespond to the range e ' ¥ ' 4
_ - — — 8% 10 0.3340878) 1.336346)
B=2.29, £,=10 (X=Xnax,L=4) to B=12.27, £,=5.4 0.00016 0.3344633) 1.337688)

X10° (X=Xpin, L=14). The lower limit was set by deter- ' ' '

mining when the difference between the central estimates 0.00032 0.3350521) 1.3396911)
75 Xmin) — 7°°(0) became of the same order as the standard 0.00064 0.3350982) 1.3427619
deviation of either extrapolated quantitsee Table Il where 0.00128 0.33756) 1.3475422)
one sees that, although this criterion has been followed 0.00256 0.3402%) 1.3552330)
strictly for 7,, the three smallest-entries forz, are in fact 0.00512 0.3450@) 1.36814)
below the threshold; however, by performing analyses with 0.01024 0.354081) 1.39045)
and without the corresponding data, we have checked that 0-02048 0.371832) 1.43096)
this is of no great import to our conclusignable Il also 0.04096 0.4086®) 1.50906)

shows that, although our extrapolations are y@&gcise ow-
ing to the remarkably smooth variation of data against

they seem to suffer from a slight lack atcuracy Indeed, ~'€Sults, using as input the upper half of Table (14 data
ext 6 and Plus thex=0 line, for each fitare displayed in Fig. 1, where

for x=0 our central estimates;” stand, respectively, h o b liahtly ab
8 standard deviations away from the known exact values fof €'Y Sharp minima can beé seen sig tly abowe0.5 (to

- : ; ; three decimal places, they are located respectivelyk at
71 and n,. We ascribe this effect teystemati@rrors coming = S .
from: (i) the shortnessin L) of our data series, andi) ~ — 0-208 for,, x=0.503 for ). This signals thati) cor-

higher-order corrections, ignored in E). Since, at least €ctions depending.on& are definitely present, thus sup-
for x=0, such errors amount to small differences in the cenP0rting the assumption made in E@); and(ii) higher-order

tral estimates(respectively—0.01% and+0.001% for 7, terms are n(Z)t negligible. Indeed, inclgsion of data for lasger
and 7,) relative to exact values, and assuming this scenariG2USes th&~ to increase steeply, while the sharpness of the
to carry over, continuously and smoothly, xe-0, we shall dips dejenorates, and their position shifts tpwards Iarger

do as follows. In Eq(8), for instance, we shall use®(0) Having ensured that square-root corrections to scaling are

instead of the exact);(0); this way we expect systematic ﬁln r?;fg?;g f(la?msemm()ftg;e rf}';;ﬂ:r' v(;/fe ;;m%;o |Irc1)<t:Iude
errors to cancel to a large extent, when considering the dif- 9 ’ ' P

ferencen®(x) — n°(0) [ 7:(x) — 7:(0)]/Vx againstyx, thus one expects
| I "

Our first test is a single-power fit to scaling corrections:
we assume 7(X) — 7i(0)

VX
and attempts straight-line fits. Results are in Fig. 2. The sub-

and varyu within a reasonably broad range, checking theset of data considered now is complementary to that used in
behavior of they? of the corresponding least-squares fit. Ourthe earlier single-power fits, as higher-order terms become

=C;+D; X+ O(X) (10)
7i(X)— 7,(0)=C; x", 9
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£ e TABLE IV. Estimates of amplitude€; , D; [see Eqs(8)—(10)],
10* g and y? per degree of freedomy®/DOF) for respective fits.
10° I 2
102 ;_ Ci Di X /DOF
o 10 B Eq.(9),i=1,u=05 0.079(4) 15103
~ b Eq.(10),i=1 0.077(1)  1.18(3) X102
Eq.(9),i=2,u=05 0.317(5) 3.6¢10°°
01F Eq. (10),i=2 0.313(3) 2.3(1) %1073
102
1078 By — minimal x?) to the estimates of; from Eq.(10), where the
) u ’ power 1/2 is fixed from the start.
FIG. 1. Semilogarithmic plot of? againstu for least-squares IV. SCALING OF THIRD GAP

fits of Eq. (9). Crosses:y,; squares:y,. Data for 7, shifted up-
wards by a factor of 100 on vertical scale, to avoid superposition.
For each fit, only data in the interval 3.052¥60 °<x<2.5
X 107 of Table Il were usedsee text

Finally, we have investigated the scaling of the third gap
at T=0. According to theory[10,11], at the critical point
there are only three relevant operators, correspon@inde-
creasing order of relevanct staggered magnetization, uni-
more important forx not very small. We noticed that inclu- form magnetization, and staggered polarization. Although, as
sion of data from the last 3—4 lines of Table Il caused arecalled above, there is widespread agreement between
quick deterioration of the quality of linear fitshe resulting theory and numerical work as regards the first two, the pre-
curvature can be seen by naked )eythis is probably the diction of Ref.[11], namely, that the corresponding decay-
effect of third- and higher-order terms i’. An alternative  of-correlations exponent is)pstagg=3, appears not to have

source of errors would be the multiplicative logarithmic peen numerically tested so fgin Ref.[11], Monte Carlo
terms, mentioned in connection with E@) above, and not  simulations were performed for the respective susceptibility,
considered in the present approach. Therefore, we decided {ghich according to the scaling lay/ v=2— 7 is expected to
keep to the range ok for which good linear plots were approach a constant, with correctiond. 2, A=1, if 7
obtainable, while using as many data as possiblerderto  _3. the approach to a constant was indeed verified, while
reduce the spread in the estimatesCpfand Di_ of EQ. (8)].  the best fit was forr =0.75 instead of unity.
The 7%35'[ compromise was found by taking data for 5 e have calculated descending eigenvalues of the transfer
X 10"°<x<0.00256, shown in Fig. 2 together with the cor- matrix- it would seem plausible to associate the third scaled
responding least-squares fits. . gap to the staggered polarization, especially since only three
Our estimates of the amplitud€§ and D; are shown in  rejevant operators are expected to come up, and the relation-
Table IV, where for single-power fits of Eq9) we quote  ghip of the other two to the first two gaps is well established.
only results foru=0.5. Although, as explained above, these|n order to check self-consistency of our results, we used
do not correspond to the respective absolute minimg?f poth a standard power-method algorithm, coupled with
they exhibit a very good quality of fit, and it seems more Gram-Schmidt orthogonalization, and a Lanczos scheme.
appropriate to compare thefimstead of those obtained at  \yhile for smallL and shallow levelgcorresponding to ei-
genvalues\;, i<3) both methods gave the same estimates,
the Lanczos results displayed instabilities for deeper levels

[LTTT T o T T rrTTlT
014 E (a) andL=8. At present we are not able to explain such discrep-
0.12 = ancies. Therefore, we restrict ourselves to the analysis of the
01 E third gap.
u Our results, again displayed in the form;=L(Ag
0.08 H A N T I Lo —A3)/ar, are shown in Table V. In order to gain an unbiased

! perspective both of the limiting bulk value af; and of the

scaling corrections, we attempted a single-power extrapola-
tion, 73(L)= n3+ag /LY with a variable poweru, and
monitored the variations of thg? of the corresponding fits
againstu. The result was qualitatively very similar to that
displayed for the fits of Eq(9) in Fig. 1: a rather sharp

[n(x) —n,(0)]/x"*

0 0.02 0.04 - . . :
12 minimum, located ati=1.8 in this case, which gave an ex-

trapolatedrn;=2.00(1) (see Table V; the error bar was cal-
FIG. 2. Plots of 7,(x) — 7;(0)]/x againstyx, fori=1 (a) and  Culated by cqnsidering the estimates on either sidengrf
i=2 (b). Straight lines are linear least-squares fits to the subset of=1.8, for which thex . beCOWQS one orc.ler Qf magnitude
data in plot, corresponding t0>510 ®<x<0.00256 in Table Ill  larger than at the minimumFixing u=1, inspired by the
(see text prediction of Ref[11] for the susceptibility, gavej;=2.11.

X
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TABLE V. Finite-L and extrapolated estimates §f. The latter
is the result of an equal-weight fit of data for=6,8, ...,14 re-
spectively to a single-power (") correction; the corresponding
u=1.8 was chosen to minimize th¢ (see text

L 73
6 1.74149553
8 1.84852826
10 1.90108612
12 1.93052844
14 1.94860339
Extr. 2.04q1)

Two-power fits in the manner of E@6), using eitherL 2

PHYSICAL REVIEW E65 056104

phenomenological scheme, based on the zero-temperature
picture; for the extrapolated scaled gaps we supplied con-
vincing evidence that square-root corrections, in the variable
X, are present, and provided estimates for the numerical val-
ues of the amplitudes of the first- and second-order correc-
tion terms, for both the first and second scaled gaps. It would
be interesting if predictions based on theory could be de-
rived, to be compared with the numerical values of ampli-
tudes obtained in this work.

We have also investigated the behavior of the third scaled
gap of the transfer matrix spectrum, and found an extrapo-
lated value for the decay-of-correlations exponen
=2.0((1). This seems incompatible with earlier predictions,
to the effect that the third relevant operator in the problem
would give npstagg:& corresponding to the staggered polar-

andL "% or L~ andL 2 also gave values between 1.99 andization.
2.01. There seems to be no straightforward way to extrapo-

late the data of Table V to includg;=3 . At this point we
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